Линейные операции над векторами
Сложение векторов
правитьПод параллельным переносом вдоль вектора понимают перемещение всех точек пространства в одном направлении на одинаковое расстояние. Определим сложение векторов так, чтобы последовательные сдвиги вдоль двух векторов соответствовали сдвигу вдоль суммы этих векторов.
Пусть даны два вектора и . Приложим вектор к некоторой точке , получим . Приложим вектор к точке , получим . Тогда вектор будем называть суммой векторов: .
Докажем, что данное определение не зависит от выбора точки .
Приложим вектор к другой точке , получим . Приложим вектор к точке , получим .
Рассмотрим направленные отрезки и . Они, очевидно, равны (см. рис.), поскольку — параллелограмм.
Умножение на число
правитьПроизведением вектора на число называется вектор, который:
- коллинеарен вектору ;
- сонаправлен ему, если , или противоположнонаправлен, если ;
- длины связаны следующим соотношением: .
Данное определение согласовано с определением сложения:
для любого натурального .
Свойства линейных операций
правитьСложение векторов коммутативно: .
Сложение векторов ассоциативно: .
Прибавление нулевого вектора к любому не меняет последнего: . Очевидно, .
Для любого вектора существует вектор такой, что или .
Умножение вектора на число ассоциативно: . Умножение вектора на число дистрибутивно относительно сложения чисел: .
Доказательство сводится к перечислению всех возможных знаков и , в каждом случае утверждение очевидно.
Умножение вектора на число дистрибутивно относительно сложения векторов: . Это следует из подобия треугольников и на рисунке.
Очевидно, умножение на единицу не меняет вектор: .
Примечание
править- В алгебре изучаются так называемые алгебраические структуры. Это множества математических объектов, для которых определены некоторые операции, удовлетворяющие некоторым системам аксиом.
- Пример такой структуры, изучаемой в линейной алгебре, — так называемое векторное (линейное) пространство. Это множество векторов, для которых определены операции сложения и умножения на элементы некоторого поля (например, поля вещественных чисел), причем эти операции удовлетворяют указанным выше свойствам.
- В линейной алгебре изучаются общие свойства таких множеств, их элементы (их называют абстрактными векторами) не обязаны быть геометрическими векторами (хотя чаще всего именно их приводят в качестве наглядного примера).
- В аналитической геометрии векторы нужны, в первую очередь для введения системы координат (см. ниже). Благодаря этому удается описать геометрические фигуры при помощи аналитических формул.
Линейные комбинации
правитьЛинейная комбинация векторов с коэффициентами — вектор . Если все коэффициенты равны нулю, линейную комбинацию называют тривиальной, иначе — нетривиальной.
Векторы называются линейно зависимыми, если существует их нетривиальная комбинация, равная нулю.
Теорема
Система векторов линейно зависима тогда и только тогда, когда один из векторов является линейной комбинацией остальных. Доказательство
Необходимость. Пусть система векторов линейно зависима. Это значит, что существует нетривиальная линейная комбинация, равная нулю: . Один из коэффициентов, например не равен нулю. Тогда
Достаточность. Пусть . Тогда Это нетривиальная (коэффициент ) линейная комбинация, равная нулю. Значит система векторов линейно зависима. |
Геометрический смысл линейной зависимости заключается в следующем:
- система из двух векторов линейно зависима тогда и только тогда, когда векторы коллинеарны;
- система из трех векторов линейно зависима тогда и только тогда, когда векторы компланарны;
- всякие четыре вектора линейно зависимы.